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�3Outline

Figure 6: Same as Fig. 5, but with leakage current results only.

10

• Silicon radiation damage at the LHC 
• Mysterious trends in fluence measurements 
✦ Data 
‣Method biases  
‣Various measurements 

✦ Simulation 
‣Damage factors 
‣Transport models 
‣Physics models  

• Outlook and future
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�5At the heart of ATLAS: Silicon Pixels
Charged-particle

Closest to the 
interaction are 

finely segmented 
silicon pixels

O(1003) µm3

record (a digitized) 
charge for ionizing 

particles



�6Zooming in on one pixel
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�8Signals after irradiation
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�9Signals after irradiation
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Figure: The dependence of the average cluster size and the measured dE/dx on

the delivered luminosity. Each point represents a single run, and only runs

recorded in 2016, 2017 and 2018 are shown (the 4.4 fb

�1
delivered in 2015 is

not shown). Clusters are selected which match exactly one reconstructed

charged track with pT > 10 GeV and |⌘| < 1.4, associated to jets with

pT > 200 GeV by 0.1 < �R(track, jet) < 0.4. The lower cut is to reduce

contamination from two particle clusters. The impact on changing the high

voltage in the IBL is clearly visible.The gradual decrease of the measured

hdE/dxi is due to the reduced charge collection fraction due to radiation

damage. Red dotted lines mark the different data taking years.

4 / 6

Charge Collection Efficiency



10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

E[MeV]

10-5

10-4

10-3

10-2

10-1

100

101

D
(E

)/9
5 

M
eV

m
b

Griffin et al. (1993)
Konobeyev (1992)
Huhtinen & Aarnio (1993)

Neutron induced displacement damage in Silicon

A.Vasilescu & G. Lindstroem

�10Radiation Environment at the LHC

Most of the damage on the 
inner layers is from charged 
hadrons.  Neutron damage is 
larger at higher radii (splash-

back from calorimeters).
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Figure 5: Simulated 1 MeV neq fluence shown as a function of the radial and longitudinal distance from the geometric
center of the detector for a one-quarter slice through the ATLAS FLUKA geometry.

C.O.M. Energy B-Layer Layer-1 Layer-2 Disk-1 Disk-2 Disk-3
7 TeV 20.53 8.69 5.39 5.52 5.25 5.13
8 TeV 21.73 9.11 5.67 5.63 5.29 5.14
13 TeV 28.94 12.41 7.87 8.25 7.99 7.91

Table 1: Fluence values simulated using the ATLAS FLUKA simulation package for three center of mass (C.O.M.)
energies. Units of the values in the table are 1 MeV neutron-equivalent ⇥ 1011 cm�2 per fb�1.

6 Precision and Systematic Uncertainties

This section provides the elements that contribute to the uncertainty of the measurement of the leakage
current, the Hamburg Model predictions, and the measurement of the fluence. The final uncertainty is
calculated by adding all contributing elements in quadrature. The precision on current measurements
made with the HVPP4 current monitoring circuit contributes 12% uncertainty. The precision on current
measurements made with the power supply units contributes 4% to the total measurement uncertainty [13].
The current measurements are made approximately once per minute and that interval contributes 0.5%
uncertainty; this uncertainty is calculated by investigating the deviations in the data over ten minute
intervals - a time interval over which the leakage current is not expected to change. The precision of the
temperature measurements contributes 2.9% uncertainty; the temperature is also not expected to fluctuate
over short time intervals and is thus calculated in the same way as the current uncertainty. Uncertainties
due to possible di�erence between the temperature of the point on the module at which the temperature
is measured, and the point on the silicon sensor to which the temperature is attributed are found to be
10% through changes to the modeled leakage current when a di�erence in temperature of 1 �C is applied
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Units: we normalize damage 
to that of a 1 MeV neutron 
and the units are neq/cm2
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�11Radiation Environment at the LHC
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We have now (  ) passed
 F = 1015 1 MeV neq/cm2 !

�12Current detector irradiation

We have huge, irradiated detectors 
to inform Run 3 / HL-LHC.
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�13Impact on Physics and Performance
Charge loss directly effects searches 

for new highly ionizing particles →

Introduction - Radiation Damage

3 Lorenzo Rossini -  INFN and Università di Milano - Trento Workshop

Tracking and pixel performance can directly impact physics analysis.
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• Some analysis directly use 

clusters properties and are 

directly affected


• Many more analyses that use 

tracking, in the future will also be 

effected.

Important to account for these effects and have correct predictions

We may be seeing a degradation 
in position resolution.

It is imperative that radiation damage 
effects be quantified to inform 

operations, offline analysis, and 
future detector design!
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Figure: The dependence of the average cluster size and the measured dE/dx on

the delivered luminosity. Each point represents a single run, and only runs

recorded in 2016, 2017 and 2018 are shown (the 4.4 fb

�1
delivered in 2015 is

not shown). Clusters are selected which match exactly one reconstructed

charged track with pT > 10 GeV and |⌘| < 1.4, associated to jets with

pT > 200 GeV by 0.1 < �R(track, jet) < 0.4. The lower cut is to reduce

contamination from two particle clusters. The impact on changing the high

voltage in the IBL is clearly visible.The gradual decrease of the measured

hdE/dxi is due to the reduced charge collection fraction due to radiation

damage. Red dotted lines mark the different data taking years.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/PIX-2018-002/
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�14The mysteries

Beam direction

(1) |z|-dependence 
much stronger in dataData Sim. 
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�17Measuring the fluence
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full period of the measurement. The leakage current data are normalized to 0 �C; the average module
temperature is shown in the top panel. Leakage current data are shown for periods of operation when the
high voltage is applied across the silicon sensor; the average module bias voltage is shown in the middle
panel of Figure 7. Some dates corresponding to extended periods when the LHC beams were o�, resulting
in annealing of the sensors, are displayed within the lower panel with gray vertical lines. The module
temperatures are taken to be 18 �C during these shutdown periods. During part of the shutdown (LS1)
between LHC Run 1 and Run 2, from February 2013 to February 2014 (LS1 ended in April 2015), the
Pixel Detector was removed from the ATLAS cavern and kept at 22 �C.

Figure 7: Average measured leakage current of a representative sample of modules in the ATLAS Pixel Detector
barrel layers over the full period of operation. The scaled prediction from the Hamburg Model is also shown.

Measured ratios of the average leakage current for modules on the B-Layer relative to the average leakage
current for modules on Layer-2, and of the average leakage current for modules on Layer-1 relative to the
average leakage current of modules on Layer-2, are shown in Figure 8 for LHC Run 2. These ratios are,
as predicted, constant as a function of integrated luminosity. Once again, some dates corresponding to
extended periods when the LHC beams were o� are displayed with gray vertical lines. Also shown in
Figure 8 are the ratios of the unscaled Hamburg Model predictions for LHC Run 2. The vertical axis is
proportional to the ratio of the applied fluence. The fluence of one layer relative to other layers is well
predicted without the need for scale factors.

The leakage current shows a dependence in the axial position, z, and this dependence is discussed in
Section 7.1. The leakage current does not show dependence on �, see Section 7.2. Leakage current
magnitude is highest in modules closest to the interaction point.

7.1 Leakage Current versus Axial Position

The Hamburg Model prediction has been scaled to match the leakage current data in the bins of z that are
monitored by the power supply system. Figure 9 shows the z-dependence of the leakage current data with

11

Most common method uses the leakage current, as Ileak / �

annealing

5.1 cm
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�18Measuring the fluence

Most common method uses the leakage current, as Ileak / �
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The fluence �eq accumulated by the ATLAS Pixel Detector, and measured in units of cm�2, is expected
to be proportional to integrated luminosity

R
Ldt, measured in fb�1. By the end of the proton-proton

collision runs in 2018, the B-Layer was predicted, by P�����8 + FLUKA, to have received an integrated
fluence of �eq = 5.27 ⇥ 1014 1 MeV neq/cm2. The B-Layer was designed to receive a total integrated
fluence of 1 ⇥ 1015 1 MeV neq/cm2 over the span of its lifetime. The evolution of fluence accumulation
over the lifetime of the detectors is shown in Figure 6.

The FLUKA simulated fluence is used as an input to the Hamburg Model [3] to predict the change in
leakage current, �Ileak, after irradiation:

�I = (�eq/Lint) ⇥ V ·
nX

i=1
Lint,i ·

2666664
↵I exp *.

,
�

nX

j=i

t j
⌧(Tj )

+/
-
+ ↵⇤0 � � log *.

,
nX

j=i

⇥(Tj ) · t j
t0

+/
-
3777775
. (4)

Here, Lint,i is the integrated luminosity, ti is the time, and Ti is the temperature in period i. The first
sum is over all time periods and the two sums inside the exponential and logarithmic functions are over
the time between the irradiation in time period i and the time of the measurement. The other symbols
in Eq. (4) are t0 = 1 min, V = depleted volume2 (in cm3), ↵I = (1.23 ± 0.06) ⇥ 10�17 A/cm, ⌧ follows
an Arrhenius equation ⌧�1 = (1.2+5.3

�1.0) ⇥ 1013 s�1 ⇥ e(�1.11±0.05)/kBT (where the units of kBT are eV),
↵⇤0 = 7.07 · 10�17 A/cm, and � = (3.29 ± 0.18) ⇥ 10�18 A/cm. A small temperature dependence has
been observed in the value of � [3]; for this analysis, the value at 21�C is used - its lowest known value
and the one closest to the operational temperature of the sensors in the detector. Equation 4 represents
the Hamburg Model as presented in [3]; under di�erent conditions di�erent terms will dominate. The
temperature scaling function ⇥(T ) is defined by

⇥(T ) = exp
"
�Ee�

kB

 
1
T
� 1

TR

! #
, (5)

where, as before, Ee� = 1.21 eV is used for the e�ective silicon band gap energy, kB is the Boltzmann
constant, and TR = 21 �C. Once the simulation is complete, a temperature correction to the full simulation
is made so that it may be compared to the leakage current data. The simulation is corrected from its initial
temperature of 21 �C to 0 �C.

The implementation of the Hamburg Model can be found in Ref. [19]; the treatment in this analysis is
identical to the treatment in the ATLAS Radiation Modeling paper [6].

The luminosity-to-fluence conversion factor, �eq/Lint, in Eq. 4 requires a scale factor to match the leakage
current data. The scale factor is determined from the constant fit to the ratio of the leakage current data
and the Hamburg Model prediction. Hamburg Model predictions are made in four bins along the z-axis
for each barrel layer (a total of 12 predictions) and for each disk. Each prediction (12 for the barrel layers
and 6 for the disks) is fit to the data with a scale factor. For each barrel layer, the average of the scaled
predictions associated with the four bins along the z axis is compared to the average leakage current data
in the same four bins.

2 Full depletion of the sensors is equal to the volume of the sensor modules, V = 0.25 cm3.

7

We want to 
know this

Measure 
this

Depleted volume

Annealing (depends on 
time t and temperature T)
N.B. the coefficients are 

dimensionfull

Caution: Model assumes uniform space-charge 
and a small number of effective defect states.

“The Hamburg Model”



�19Challenges with leakage measurement
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The fluence �eq accumulated by the ATLAS Pixel Detector, and measured in units of cm�2, is expected
to be proportional to integrated luminosity

R
Ldt, measured in fb�1. By the end of the proton-proton

collision runs in 2018, the B-Layer was predicted, by P�����8 + FLUKA, to have received an integrated
fluence of �eq = 5.27 ⇥ 1014 1 MeV neq/cm2. The B-Layer was designed to receive a total integrated
fluence of 1 ⇥ 1015 1 MeV neq/cm2 over the span of its lifetime. The evolution of fluence accumulation
over the lifetime of the detectors is shown in Figure 6.

The FLUKA simulated fluence is used as an input to the Hamburg Model [3] to predict the change in
leakage current, �Ileak, after irradiation:

�I = (�eq/Lint) ⇥ V ·
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Here, Lint,i is the integrated luminosity, ti is the time, and Ti is the temperature in period i. The first
sum is over all time periods and the two sums inside the exponential and logarithmic functions are over
the time between the irradiation in time period i and the time of the measurement. The other symbols
in Eq. (4) are t0 = 1 min, V = depleted volume2 (in cm3), ↵I = (1.23 ± 0.06) ⇥ 10�17 A/cm, ⌧ follows
an Arrhenius equation ⌧�1 = (1.2+5.3

�1.0) ⇥ 1013 s�1 ⇥ e(�1.11±0.05)/kBT (where the units of kBT are eV),
↵⇤0 = 7.07 · 10�17 A/cm, and � = (3.29 ± 0.18) ⇥ 10�18 A/cm. A small temperature dependence has
been observed in the value of � [3]; for this analysis, the value at 21�C is used - its lowest known value
and the one closest to the operational temperature of the sensors in the detector. Equation 4 represents
the Hamburg Model as presented in [3]; under di�erent conditions di�erent terms will dominate. The
temperature scaling function ⇥(T ) is defined by

⇥(T ) = exp
"
�Ee�

kB

 
1
T
� 1

TR

! #
, (5)

where, as before, Ee� = 1.21 eV is used for the e�ective silicon band gap energy, kB is the Boltzmann
constant, and TR = 21 �C. Once the simulation is complete, a temperature correction to the full simulation
is made so that it may be compared to the leakage current data. The simulation is corrected from its initial
temperature of 21 �C to 0 �C.

The implementation of the Hamburg Model can be found in Ref. [19]; the treatment in this analysis is
identical to the treatment in the ATLAS Radiation Modeling paper [6].

The luminosity-to-fluence conversion factor, �eq/Lint, in Eq. 4 requires a scale factor to match the leakage
current data. The scale factor is determined from the constant fit to the ratio of the leakage current data
and the Hamburg Model prediction. Hamburg Model predictions are made in four bins along the z-axis
for each barrel layer (a total of 12 predictions) and for each disk. Each prediction (12 for the barrel layers
and 6 for the disks) is fit to the data with a scale factor. For each barrel layer, the average of the scaled
predictions associated with the four bins along the z axis is compared to the average leakage current data
in the same four bins.

2 Full depletion of the sensors is equal to the volume of the sensor modules, V = 0.25 cm3.
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Impact of Eeff

• Three pairs of leakage current data and predictions with 
the Hamburg Model, with three Eeff values used to analyze 
them, are shown here before a scale factor is applied

I(Tref) = I(T )
�
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The current 
has an 

exponential 
scaling with T.

We correct for 
this, but no 

consensus on Eeff.
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The fluence �eq accumulated by the ATLAS Pixel Detector, and measured in units of cm�2, is expected
to be proportional to integrated luminosity

R
Ldt, measured in fb�1. By the end of the proton-proton

collision runs in 2018, the B-Layer was predicted, by P�����8 + FLUKA, to have received an integrated
fluence of �eq = 5.27 ⇥ 1014 1 MeV neq/cm2. The B-Layer was designed to receive a total integrated
fluence of 1 ⇥ 1015 1 MeV neq/cm2 over the span of its lifetime. The evolution of fluence accumulation
over the lifetime of the detectors is shown in Figure 6.

The FLUKA simulated fluence is used as an input to the Hamburg Model [3] to predict the change in
leakage current, �Ileak, after irradiation:

�I = (�eq/Lint) ⇥ V ·
nX

i=1
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Here, Lint,i is the integrated luminosity, ti is the time, and Ti is the temperature in period i. The first
sum is over all time periods and the two sums inside the exponential and logarithmic functions are over
the time between the irradiation in time period i and the time of the measurement. The other symbols
in Eq. (4) are t0 = 1 min, V = depleted volume2 (in cm3), ↵I = (1.23 ± 0.06) ⇥ 10�17 A/cm, ⌧ follows
an Arrhenius equation ⌧�1 = (1.2+5.3

�1.0) ⇥ 1013 s�1 ⇥ e(�1.11±0.05)/kBT (where the units of kBT are eV),
↵⇤0 = 7.07 · 10�17 A/cm, and � = (3.29 ± 0.18) ⇥ 10�18 A/cm. A small temperature dependence has
been observed in the value of � [3]; for this analysis, the value at 21�C is used - its lowest known value
and the one closest to the operational temperature of the sensors in the detector. Equation 4 represents
the Hamburg Model as presented in [3]; under di�erent conditions di�erent terms will dominate. The
temperature scaling function ⇥(T ) is defined by

⇥(T ) = exp
"
�Ee�

kB

 
1
T
� 1

TR

! #
, (5)

where, as before, Ee� = 1.21 eV is used for the e�ective silicon band gap energy, kB is the Boltzmann
constant, and TR = 21 �C. Once the simulation is complete, a temperature correction to the full simulation
is made so that it may be compared to the leakage current data. The simulation is corrected from its initial
temperature of 21 �C to 0 �C.

The implementation of the Hamburg Model can be found in Ref. [19]; the treatment in this analysis is
identical to the treatment in the ATLAS Radiation Modeling paper [6].

The luminosity-to-fluence conversion factor, �eq/Lint, in Eq. 4 requires a scale factor to match the leakage
current data. The scale factor is determined from the constant fit to the ratio of the leakage current data
and the Hamburg Model prediction. Hamburg Model predictions are made in four bins along the z-axis
for each barrel layer (a total of 12 predictions) and for each disk. Each prediction (12 for the barrel layers
and 6 for the disks) is fit to the data with a scale factor. For each barrel layer, the average of the scaled
predictions associated with the four bins along the z axis is compared to the average leakage current data
in the same four bins.

2 Full depletion of the sensors is equal to the volume of the sensor modules, V = 0.25 cm3.
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The fluence �eq accumulated by the ATLAS Pixel Detector, and measured in units of cm�2, is expected
to be proportional to integrated luminosity

R
Ldt, measured in fb�1. By the end of the proton-proton

collision runs in 2018, the B-Layer was predicted, by P�����8 + FLUKA, to have received an integrated
fluence of �eq = 5.27 ⇥ 1014 1 MeV neq/cm2. The B-Layer was designed to receive a total integrated
fluence of 1 ⇥ 1015 1 MeV neq/cm2 over the span of its lifetime. The evolution of fluence accumulation
over the lifetime of the detectors is shown in Figure 6.

The FLUKA simulated fluence is used as an input to the Hamburg Model [3] to predict the change in
leakage current, �Ileak, after irradiation:

�I = (�eq/Lint) ⇥ V ·
nX

i=1
Lint,i ·

2666664
↵I exp *.

,
�

nX
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t j
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⇥(Tj ) · t j
t0
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. (4)

Here, Lint,i is the integrated luminosity, ti is the time, and Ti is the temperature in period i. The first
sum is over all time periods and the two sums inside the exponential and logarithmic functions are over
the time between the irradiation in time period i and the time of the measurement. The other symbols
in Eq. (4) are t0 = 1 min, V = depleted volume2 (in cm3), ↵I = (1.23 ± 0.06) ⇥ 10�17 A/cm, ⌧ follows
an Arrhenius equation ⌧�1 = (1.2+5.3

�1.0) ⇥ 1013 s�1 ⇥ e(�1.11±0.05)/kBT (where the units of kBT are eV),
↵⇤0 = 7.07 · 10�17 A/cm, and � = (3.29 ± 0.18) ⇥ 10�18 A/cm. A small temperature dependence has
been observed in the value of � [3]; for this analysis, the value at 21�C is used - its lowest known value
and the one closest to the operational temperature of the sensors in the detector. Equation 4 represents
the Hamburg Model as presented in [3]; under di�erent conditions di�erent terms will dominate. The
temperature scaling function ⇥(T ) is defined by

⇥(T ) = exp
"
�Ee�

kB

 
1
T
� 1

TR

! #
, (5)

where, as before, Ee� = 1.21 eV is used for the e�ective silicon band gap energy, kB is the Boltzmann
constant, and TR = 21 �C. Once the simulation is complete, a temperature correction to the full simulation
is made so that it may be compared to the leakage current data. The simulation is corrected from its initial
temperature of 21 �C to 0 �C.

The implementation of the Hamburg Model can be found in Ref. [19]; the treatment in this analysis is
identical to the treatment in the ATLAS Radiation Modeling paper [6].

The luminosity-to-fluence conversion factor, �eq/Lint, in Eq. 4 requires a scale factor to match the leakage
current data. The scale factor is determined from the constant fit to the ratio of the leakage current data
and the Hamburg Model prediction. Hamburg Model predictions are made in four bins along the z-axis
for each barrel layer (a total of 12 predictions) and for each disk. Each prediction (12 for the barrel layers
and 6 for the disks) is fit to the data with a scale factor. For each barrel layer, the average of the scaled
predictions associated with the four bins along the z axis is compared to the average leakage current data
in the same four bins.

2 Full depletion of the sensors is equal to the volume of the sensor modules, V = 0.25 cm3.
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The fluence �eq accumulated by the ATLAS Pixel Detector, and measured in units of cm�2, is expected
to be proportional to integrated luminosity

R
Ldt, measured in fb�1. By the end of the proton-proton

collision runs in 2018, the B-Layer was predicted, by P�����8 + FLUKA, to have received an integrated
fluence of �eq = 5.27 ⇥ 1014 1 MeV neq/cm2. The B-Layer was designed to receive a total integrated
fluence of 1 ⇥ 1015 1 MeV neq/cm2 over the span of its lifetime. The evolution of fluence accumulation
over the lifetime of the detectors is shown in Figure 6.

The FLUKA simulated fluence is used as an input to the Hamburg Model [3] to predict the change in
leakage current, �Ileak, after irradiation:

�I = (�eq/Lint) ⇥ V ·
nX

i=1
Lint,i ·

2666664
↵I exp *.

,
�

nX

j=i

t j
⌧(Tj )

+/
-
+ ↵⇤0 � � log *.

,
nX

j=i

⇥(Tj ) · t j
t0

+/
-
3777775
. (4)

Here, Lint,i is the integrated luminosity, ti is the time, and Ti is the temperature in period i. The first
sum is over all time periods and the two sums inside the exponential and logarithmic functions are over
the time between the irradiation in time period i and the time of the measurement. The other symbols
in Eq. (4) are t0 = 1 min, V = depleted volume2 (in cm3), ↵I = (1.23 ± 0.06) ⇥ 10�17 A/cm, ⌧ follows
an Arrhenius equation ⌧�1 = (1.2+5.3

�1.0) ⇥ 1013 s�1 ⇥ e(�1.11±0.05)/kBT (where the units of kBT are eV),
↵⇤0 = 7.07 · 10�17 A/cm, and � = (3.29 ± 0.18) ⇥ 10�18 A/cm. A small temperature dependence has
been observed in the value of � [3]; for this analysis, the value at 21�C is used - its lowest known value
and the one closest to the operational temperature of the sensors in the detector. Equation 4 represents
the Hamburg Model as presented in [3]; under di�erent conditions di�erent terms will dominate. The
temperature scaling function ⇥(T ) is defined by

⇥(T ) = exp
"
�Ee�

kB

 
1
T
� 1

TR

! #
, (5)

where, as before, Ee� = 1.21 eV is used for the e�ective silicon band gap energy, kB is the Boltzmann
constant, and TR = 21 �C. Once the simulation is complete, a temperature correction to the full simulation
is made so that it may be compared to the leakage current data. The simulation is corrected from its initial
temperature of 21 �C to 0 �C.

The implementation of the Hamburg Model can be found in Ref. [19]; the treatment in this analysis is
identical to the treatment in the ATLAS Radiation Modeling paper [6].

The luminosity-to-fluence conversion factor, �eq/Lint, in Eq. 4 requires a scale factor to match the leakage
current data. The scale factor is determined from the constant fit to the ratio of the leakage current data
and the Hamburg Model prediction. Hamburg Model predictions are made in four bins along the z-axis
for each barrel layer (a total of 12 predictions) and for each disk. Each prediction (12 for the barrel layers
and 6 for the disks) is fit to the data with a scale factor. For each barrel layer, the average of the scaled
predictions associated with the four bins along the z axis is compared to the average leakage current data
in the same four bins.

2 Full depletion of the sensors is equal to the volume of the sensor modules, V = 0.25 cm3.

7

Depleted volume

Ratios between 
layers should 
be constant

Figure 4: Same as Fig. 3, but without a ratio.

8

Full Run 2
2015-2018

2016 we were 
underdepleted!



�23Challenges with leakage measurement

N
o

t
r
e
v

i
e
w

e
d

,
f
o

r
i
n

t
e
r
n

a
l

c
i
r
c
u

l
a

t
i
o

n
o

n
l
y

The fluence �eq accumulated by the ATLAS Pixel Detector, and measured in units of cm�2, is expected
to be proportional to integrated luminosity

R
Ldt, measured in fb�1. By the end of the proton-proton

collision runs in 2018, the B-Layer was predicted, by P�����8 + FLUKA, to have received an integrated
fluence of �eq = 5.27 ⇥ 1014 1 MeV neq/cm2. The B-Layer was designed to receive a total integrated
fluence of 1 ⇥ 1015 1 MeV neq/cm2 over the span of its lifetime. The evolution of fluence accumulation
over the lifetime of the detectors is shown in Figure 6.

The FLUKA simulated fluence is used as an input to the Hamburg Model [3] to predict the change in
leakage current, �Ileak, after irradiation:

�I = (�eq/Lint) ⇥ V ·
nX

i=1
Lint,i ·

2666664
↵I exp *.

,
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t0
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. (4)

Here, Lint,i is the integrated luminosity, ti is the time, and Ti is the temperature in period i. The first
sum is over all time periods and the two sums inside the exponential and logarithmic functions are over
the time between the irradiation in time period i and the time of the measurement. The other symbols
in Eq. (4) are t0 = 1 min, V = depleted volume2 (in cm3), ↵I = (1.23 ± 0.06) ⇥ 10�17 A/cm, ⌧ follows
an Arrhenius equation ⌧�1 = (1.2+5.3

�1.0) ⇥ 1013 s�1 ⇥ e(�1.11±0.05)/kBT (where the units of kBT are eV),
↵⇤0 = 7.07 · 10�17 A/cm, and � = (3.29 ± 0.18) ⇥ 10�18 A/cm. A small temperature dependence has
been observed in the value of � [3]; for this analysis, the value at 21�C is used - its lowest known value
and the one closest to the operational temperature of the sensors in the detector. Equation 4 represents
the Hamburg Model as presented in [3]; under di�erent conditions di�erent terms will dominate. The
temperature scaling function ⇥(T ) is defined by

⇥(T ) = exp
"
�Ee�

kB

 
1
T
� 1

TR

! #
, (5)

where, as before, Ee� = 1.21 eV is used for the e�ective silicon band gap energy, kB is the Boltzmann
constant, and TR = 21 �C. Once the simulation is complete, a temperature correction to the full simulation
is made so that it may be compared to the leakage current data. The simulation is corrected from its initial
temperature of 21 �C to 0 �C.

The implementation of the Hamburg Model can be found in Ref. [19]; the treatment in this analysis is
identical to the treatment in the ATLAS Radiation Modeling paper [6].

The luminosity-to-fluence conversion factor, �eq/Lint, in Eq. 4 requires a scale factor to match the leakage
current data. The scale factor is determined from the constant fit to the ratio of the leakage current data
and the Hamburg Model prediction. Hamburg Model predictions are made in four bins along the z-axis
for each barrel layer (a total of 12 predictions) and for each disk. Each prediction (12 for the barrel layers
and 6 for the disks) is fit to the data with a scale factor. For each barrel layer, the average of the scaled
predictions associated with the four bins along the z axis is compared to the average leakage current data
in the same four bins.

2 Full depletion of the sensors is equal to the volume of the sensor modules, V = 0.25 cm3.
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z Bin Scale Factor Uncertainty

B-Layer

-38.0 cm <z <-23.7 cm 1.31 0.02
-13.3 cm <z <1.0 cm 1.47 0.02
5.17 cm <z <13.3 cm 1.28 0.02
29.9 cm <z <38.0 cm 1.15 0.02

Layer-1

-38.0 cm <z <-23.7 cm 1.26 0.02
-13.3 cm <z <1.0 cm 1.42 0.02
-1.0 cm <z <13.3 cm 1.31 0.02
23.7 cm <z <38.0 cm 1.25 0.02

Layer-2

-38.0 cm <z <-23.7 cm 1.32 0.02
-13.3 cm <z <1.0 cm 1.43 0.02
-1.0 cm <z <13.3 cm 1.36 0.02
23.7 cm <z <38.0 cm 1.25 0.02

Table 5: Barrel Layer scale factors. The bin limits are determined by the paired module powering scheme. Each
bin is defined based on the center location of the modules that are included in the bin; one centimeter is added to or
subtracted from the center location in defining the bin limits to include the center position of all modules in the bin.

Figure 8: Ratios of the B-Layer and Layer-1 leakage current data to Layer-2 leakage current for the LHC Run 2
period of ATLAS operation.

single module precision as well as multiple module precision. The quality of the scaled Hamburg Model
is confirmed with the two independent measurements. The uncertainty on the Hamburg Model prediction
is 3.8%. Missing HVPP4 data are due to temporary power shutdowns.

12

for the three 
outer layers, 

remarkably stable
(probably not stable enough to be useful to 

constrain the luminosity, unfortunately)
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The fluence �eq accumulated by the ATLAS Pixel Detector, and measured in units of cm�2, is expected
to be proportional to integrated luminosity

R
Ldt, measured in fb�1. By the end of the proton-proton

collision runs in 2018, the B-Layer was predicted, by P�����8 + FLUKA, to have received an integrated
fluence of �eq = 5.27 ⇥ 1014 1 MeV neq/cm2. The B-Layer was designed to receive a total integrated
fluence of 1 ⇥ 1015 1 MeV neq/cm2 over the span of its lifetime. The evolution of fluence accumulation
over the lifetime of the detectors is shown in Figure 6.

The FLUKA simulated fluence is used as an input to the Hamburg Model [3] to predict the change in
leakage current, �Ileak, after irradiation:

�I = (�eq/Lint) ⇥ V ·
nX

i=1
Lint,i ·
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-
3777775
. (4)

Here, Lint,i is the integrated luminosity, ti is the time, and Ti is the temperature in period i. The first
sum is over all time periods and the two sums inside the exponential and logarithmic functions are over
the time between the irradiation in time period i and the time of the measurement. The other symbols
in Eq. (4) are t0 = 1 min, V = depleted volume2 (in cm3), ↵I = (1.23 ± 0.06) ⇥ 10�17 A/cm, ⌧ follows
an Arrhenius equation ⌧�1 = (1.2+5.3

�1.0) ⇥ 1013 s�1 ⇥ e(�1.11±0.05)/kBT (where the units of kBT are eV),
↵⇤0 = 7.07 · 10�17 A/cm, and � = (3.29 ± 0.18) ⇥ 10�18 A/cm. A small temperature dependence has
been observed in the value of � [3]; for this analysis, the value at 21�C is used - its lowest known value
and the one closest to the operational temperature of the sensors in the detector. Equation 4 represents
the Hamburg Model as presented in [3]; under di�erent conditions di�erent terms will dominate. The
temperature scaling function ⇥(T ) is defined by

⇥(T ) = exp
"
�Ee�

kB

 
1
T
� 1

TR

! #
, (5)

where, as before, Ee� = 1.21 eV is used for the e�ective silicon band gap energy, kB is the Boltzmann
constant, and TR = 21 �C. Once the simulation is complete, a temperature correction to the full simulation
is made so that it may be compared to the leakage current data. The simulation is corrected from its initial
temperature of 21 �C to 0 �C.

The implementation of the Hamburg Model can be found in Ref. [19]; the treatment in this analysis is
identical to the treatment in the ATLAS Radiation Modeling paper [6].

The luminosity-to-fluence conversion factor, �eq/Lint, in Eq. 4 requires a scale factor to match the leakage
current data. The scale factor is determined from the constant fit to the ratio of the leakage current data
and the Hamburg Model prediction. Hamburg Model predictions are made in four bins along the z-axis
for each barrel layer (a total of 12 predictions) and for each disk. Each prediction (12 for the barrel layers
and 6 for the disks) is fit to the data with a scale factor. For each barrel layer, the average of the scaled
predictions associated with the four bins along the z axis is compared to the average leakage current data
in the same four bins.

2 Full depletion of the sensors is equal to the volume of the sensor modules, V = 0.25 cm3.
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The fluence �eq accumulated by the ATLAS Pixel Detector, and measured in units of cm�2, is expected
to be proportional to integrated luminosity

R
Ldt, measured in fb�1. By the end of the proton-proton

collision runs in 2018, the B-Layer was predicted, by P�����8 + FLUKA, to have received an integrated
fluence of �eq = 5.27 ⇥ 1014 1 MeV neq/cm2. The B-Layer was designed to receive a total integrated
fluence of 1 ⇥ 1015 1 MeV neq/cm2 over the span of its lifetime. The evolution of fluence accumulation
over the lifetime of the detectors is shown in Figure 6.

The FLUKA simulated fluence is used as an input to the Hamburg Model [3] to predict the change in
leakage current, �Ileak, after irradiation:

�I = (�eq/Lint) ⇥ V ·
nX
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Here, Lint,i is the integrated luminosity, ti is the time, and Ti is the temperature in period i. The first
sum is over all time periods and the two sums inside the exponential and logarithmic functions are over
the time between the irradiation in time period i and the time of the measurement. The other symbols
in Eq. (4) are t0 = 1 min, V = depleted volume2 (in cm3), ↵I = (1.23 ± 0.06) ⇥ 10�17 A/cm, ⌧ follows
an Arrhenius equation ⌧�1 = (1.2+5.3

�1.0) ⇥ 1013 s�1 ⇥ e(�1.11±0.05)/kBT (where the units of kBT are eV),
↵⇤0 = 7.07 · 10�17 A/cm, and � = (3.29 ± 0.18) ⇥ 10�18 A/cm. A small temperature dependence has
been observed in the value of � [3]; for this analysis, the value at 21�C is used - its lowest known value
and the one closest to the operational temperature of the sensors in the detector. Equation 4 represents
the Hamburg Model as presented in [3]; under di�erent conditions di�erent terms will dominate. The
temperature scaling function ⇥(T ) is defined by

⇥(T ) = exp
"
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kB
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, (5)

where, as before, Ee� = 1.21 eV is used for the e�ective silicon band gap energy, kB is the Boltzmann
constant, and TR = 21 �C. Once the simulation is complete, a temperature correction to the full simulation
is made so that it may be compared to the leakage current data. The simulation is corrected from its initial
temperature of 21 �C to 0 �C.

The implementation of the Hamburg Model can be found in Ref. [19]; the treatment in this analysis is
identical to the treatment in the ATLAS Radiation Modeling paper [6].

The luminosity-to-fluence conversion factor, �eq/Lint, in Eq. 4 requires a scale factor to match the leakage
current data. The scale factor is determined from the constant fit to the ratio of the leakage current data
and the Hamburg Model prediction. Hamburg Model predictions are made in four bins along the z-axis
for each barrel layer (a total of 12 predictions) and for each disk. Each prediction (12 for the barrel layers
and 6 for the disks) is fit to the data with a scale factor. For each barrel layer, the average of the scaled
predictions associated with the four bins along the z axis is compared to the average leakage current data
in the same four bins.

2 Full depletion of the sensors is equal to the volume of the sensor modules, V = 0.25 cm3.

7

This is the largest source of 
uncertainty from the measurement.

These coefficients are “known” from various laboratory 
measurements, but there is a hidden & largely unknown 

damage factor conversion (more on this later).

(you know how many e.g. protons hit your 
detector, but not their 1 MeV neq!)
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N.B. data > prediction … important 
to take note for safety factors ! 

data ~ sim. for innermost

data ~ 1.5 x sim. for other pixels

data ~ sim. for strips

A. Grummer Page 1811 February 2019 

B-Layer Fluence Comparisons

Pythia tuning: A2M_MSTW2008LO. See ref. on slide 19 

• Fluence predictions by 
Pythia8 and FLUKA 
are weighted averages 
of the fluence predicted 
at center of mass 7, 8, 
and 13 TeV

• Uncertainty on the 
fluence predicted by 
Pythia and FLUKA MC 
is 1% (statistical only)

• Comparison of fluence predictions by Pythia 8 and FLUKA to the 
fluence determined from the Hamburg Model scaled to agree with 
the leakage current data, for the B-Layer
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2nd workshop on radiation effects 
in the LHC experiments: impact on 

operation and performance

Sessions on: sensor measurements & simulations; 
radiation background simulation & benchmarking;             

effects on electronics/optoelectronics

indico.cern.ch/event/76919211-12 Feb 2019 at CERN:

a post run 2 review, with focus on 
inner detector systems

a post run 2 review, with focus on 
inner detector systems

indico.cern.ch/event/769192

Sessions on: sensor measurements & simulations; 
radiation background simulation & benchmarking;             

effects on electronics/optoelectronics

11-12 Feb 2019 at CERN:

Organising Committee: E.Butz (KIT), M.van Beuzekom (Nikhef), J.Buytaert (CERN), M.Bomben (LPNHE), P.Collins (CERN), I.Dawson (Sheffield), 
S.Mallows (KIT), M.Moll (CERN), A.Mucha (AGH UST), B.Nachman (LBNL), D.Robinson (Cambridge), A.Rozanov (CPPM-IN2P3-CNRS)

2nd workshop on radiation effects 
in the LHC experiments: impact on 

operation and performance

also seen by 
CMS!
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Caution:
Annealing can 

affect in 
different ways!
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Figure: The dependence of the average cluster size and the measured dE/dx on

the delivered luminosity. Each point represents a single run, and only runs

recorded in 2016, 2017 and 2018 are shown (the 4.4 fb
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delivered in 2015 is

not shown). Clusters are selected which match exactly one reconstructed

charged track with pT > 10 GeV and |⌘| < 1.4, associated to jets with

pT > 200 GeV by 0.1 < �R(track, jet) < 0.4. The lower cut is to reduce

contamination from two particle clusters. The impact on changing the high

voltage in the IBL is clearly visible.The gradual decrease of the measured

hdE/dxi is due to the reduced charge collection fraction due to radiation

damage. Red dotted lines mark the different data taking years.
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Charge Collection Efficiency

Simulation results compared to data

Chiochia model as input to ATLAS radiation damage digitizer (see talk by Alex)
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dN stable
A /dt / �(t)

Ne↵(t) = N0(t)�N stable
A (t) +Nannealing(t)

Vdep. = |Ne↵| · ed2

2✏✏0

“Hamburg Model”
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Figure 5: Values of the IBL depletion voltage measured at di↵erent integrated luminosities in 2015 and 2018. The
values measured for a IBL module in a beam test before and after irradiation at 1015 1 MeV-neutrons equivalent cm�2

are also shown.

Figure 6: Values of the IBL depletion voltage measured in 2018 as a function of the position of the reconstructed
cluster along the stave, z, normalized to the depletion voltage measured on the central modules around z = 0. The
values are compared to the fluence profile along z extracted from the analysis of the IBL leakage current in 2016 shown
in the lower plot.

3

Agrees with 
leakage 
current!
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Since we apply both E and B fields, the charges drift at an angle.  The 
sensors are tilted and there is an angle that minimizes the cluster size.

I. Gorelov et al. NIMA (2002)
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So the data seem real … maybe the 
source is on the prediction side?
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Figure 5: Simulated 1 MeV neq fluence shown as a function of the radial and longitudinal distance from the geometric
center of the detector for a one-quarter slice through the ATLAS FLUKA geometry.

C.O.M. Energy B-Layer Layer-1 Layer-2 Disk-1 Disk-2 Disk-3
7 TeV 20.53 8.69 5.39 5.52 5.25 5.13
8 TeV 21.73 9.11 5.67 5.63 5.29 5.14
13 TeV 28.94 12.41 7.87 8.25 7.99 7.91

Table 1: Fluence values simulated using the ATLAS FLUKA simulation package for three center of mass (C.O.M.)
energies. Units of the values in the table are 1 MeV neutron-equivalent ⇥ 1011 cm�2 per fb�1.

6 Precision and Systematic Uncertainties

This section provides the elements that contribute to the uncertainty of the measurement of the leakage
current, the Hamburg Model predictions, and the measurement of the fluence. The final uncertainty is
calculated by adding all contributing elements in quadrature. The precision on current measurements
made with the HVPP4 current monitoring circuit contributes 12% uncertainty. The precision on current
measurements made with the power supply units contributes 4% to the total measurement uncertainty [13].
The current measurements are made approximately once per minute and that interval contributes 0.5%
uncertainty; this uncertainty is calculated by investigating the deviations in the data over ten minute
intervals - a time interval over which the leakage current is not expected to change. The precision of the
temperature measurements contributes 2.9% uncertainty; the temperature is also not expected to fluctuate
over short time intervals and is thus calculated in the same way as the current uncertainty. Uncertainties
due to possible di�erence between the temperature of the point on the module at which the temperature
is measured, and the point on the silicon sensor to which the temperature is attributed are found to be
10% through changes to the modeled leakage current when a di�erence in temperature of 1 �C is applied

8
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Community repository 
of damage factors:

http://rd50.web.cern.ch/rd50/NIEL


�48…and now the caveats

Paul Miyagawa

Not all transport codes 
use the full range of 

damage factors.

Here is a 10% effect from 
truncating the pion 

damage factors 

(no, it does not induce a 50% shift 
for the IBL fluence at high |z|!)

https://indico.cern.ch/event/663851/contributions/2711528/attachments/1561258/2458035/RD50_Fluka_20-11-17.pdf


�49Damage factors

IBL damage with uncertainties 

12. Feb 2019 LHC Radiation Damage Workshop Mika Huhtinen (CERN/PH) 18 

Now, let’s look again at the ATLAS IBL damage prediction vs data plot: 

Both simulations use the RD50  
damage constants. 

²  about 60% of the damage is  
     due to pions 
²  these pion damage constants  
     have ~30%, mostly correlated,  
     uncertainty    

The measured  leakage current 
is translated to 1 MeV n Eq. Φ
using an α measured in some 
neutron spectrum, folded with the 
(RD50) neutron damage curve 

²  these also have ~30%, fully 
     correlated, uncertainty 

à the comparison suggests a difference in z-dependence, but it is inconclusive  
     if the center is underestimated or the large-z region overestimated, or both 

²  Kaon damage (~15%) is pure guess 

Error estimates  
added by hand 

https://indico.cern.ch/event/769192/contributions/3297625/attachments/1794216/2924056/LHC-RadDam-WS-120219.pdf


�50Road map

Is it a problem with …?

Simulation

Physics 
modeling

Transport 
model

Damage 
factors

Model 
biases

Try multiple 
methods!

Data

Method 
biases

Most likely candidate(s)?  I’d put my 
money on physics modeling or damage 
factors.  The latter are quite uncertain, 
but hard to make a big |z|-dependence.



�51Conclusions and outlook
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The fluence is the key 
ingredient to radiation 

damage modeling.

We are still investigating, 
but in the mean time 

have integrated 
radiation damage into 
the ATLAS simulation.

This is allowing us to 
improve our data 

analysis and plan for  
Run 3 and the HL-LHC!



�52Backup



�53Results from CMS pixels

Simulation vs. Measurements

Simulation vs. Measurements – Leakage Current Layer 1

Data granularity: Per sector, not
resolved in z
Temp measured near cooling loops ¥
≠11.5 ¶C
If detector on: Add an o�set ∆ Si at ¥
-8.5 ± 2 ¶C
Leakage current simulations are
corrected by a factor of 1.0
Final fluence from FLUKA:
¥ 7.9 ◊ 1014 neq/cm2

F. Feindt (University of Hamburg) CMS Pixel Radiation Damage Measurements February 14, 2019 8 / 20

Simulation vs. Measurements

Simulation vs. Measurements – Leakage Current Layer 2

Data granularity: Per sector, not
resolved in z
Temp measured near cooling loops ¥
≠11.5 ¶C
If detector on: Add an o�set ∆ Si at ¥
-8.5 ± 2 ¶C
Leakage current simulations are
corrected by a factor of 2.2
Final fluence from FLUKA:
¥ 1.8 ◊ 1014 neq/cm2

F. Feindt (University of Hamburg) CMS Pixel Radiation Damage Measurements February 14, 2019 9 / 20

Simulation vs. Measurements

Simulation vs. Measurements – Leakage Current Layer 3

Data granularity: Per sector, not
resolved in z
Temp measured near cooling loops ¥
≠11.5 ¶C
If detector on: Add an o�set ∆ Si at ¥
-8.5 ± 2 ¶C
Leakage current simulations are
corrected by a factor of 2.0
Final fluence from FLUKA:
¥ 9 ◊ 1013 neq/cm2

F. Feindt (University of Hamburg) CMS Pixel Radiation Damage Measurements February 14, 2019 10 / 20

Simulation vs. Measurements

Simulation vs. Measurements – Leakage Current Layer 4

Data granularity: Per sector, not
resolved in z
Temp measured near cooling loops ¥
≠11.5 ¶C
If detector on: Add an o�set ∆ Si at ¥
-7.5 ± 2 ¶C
Leakage current simulations are
corrected by a factor of 1.8
Final fluence from FLUKA:
¥ 5 ◊ 1013 neq/cm2

F. Feindt (University of Hamburg) CMS Pixel Radiation Damage Measurements February 14, 2019 11 / 20

…confirm our strong radius dependence



�54Results from CMS pixels
…and confirm our strong z dependence!

Z-Dependence of Leakage Current

Z-Dependence of Leakage Current – Measurements

HV channels group modules with the same „ region in
the detector. Individual cables group modules in z. By
disconnecting cables from power supply backplanes in
the CMS experimental cavern it was possible to isolate
individual (layer 1) and groups of modules on same
z-positions.
The detector was at nominal operating temperature
with a CO2 set point of ≠22 ¶C.
The measurements were taken after the end of the
2018 heavy ion run.

F. Feindt (University of Hamburg) CMS Pixel Radiation Damage Measurements February 14, 2019 14 / 20
Z-Dependence of Leakage Current

Z-Dependence of Leakage Current – Layer 1 - I

Z-position measured mid of each module
Measured volume 0.299 cm3 (16 ROCs)
Fluence 7.9 ◊ 1014 neq/cm2 (FLUKA,
at z=0)
Dose 41 Mrad (from occupancies)

Di�erent z, Ileak di�ers up to ¥ 150 µA
Between sectors Ileak di�ers up to ¥
50 µA
Larger leakage currents towards smaller
z, not fully consistent between all
measured sectors (one outlier)

F. Feindt (University of Hamburg) CMS Pixel Radiation Damage Measurements February 14, 2019 15 / 20


